Strongly Homotopy Lie Bialgebras and Lie Quasi-bialgebras
نویسنده
چکیده
Structures of Lie algebras, Lie coalgebras, Lie bialgebras and Lie quasibialgebras are presented as solutions of Maurer-Cartan equations on corresponding governing differential graded Lie algebras using the big bracket construction of Kosmann-Schwarzbach. This approach provides a definition of an L∞-(quasi)bialgebra (strongly homotopy Lie (quasi)bialgebra). We recover an L∞-algebra structure as a particular case of our construction. The formal geometry interpretation leads to a definition of an L∞ (quasi)bialgebra structure on V as a differential operatorQ on V, self-commuting with respect to the big bracket. Finally, we establish an L∞-version of a Manin (quasi) triple and get a correspondence theorem with L∞-(quasi) bialgebras.
منابع مشابه
Quasi-bialgebras and Dynamical R-matrices
We study the relationship between general dynamical Poisson groupoids and Lie quasi-bialgebras. For a class of Lie quasi-bialgebras G naturally compatible with a reductive decomposition , we extend the description of the moduli space of classical dynamical r-matrices of Etingof and Schiffmann. We construct, in each gauge orbit, an explicit analytic representative l can. We translate the notion ...
متن کاملThe Classical Hom-yang-baxter Equation and Hom-lie Bialgebras
Motivated by recent work on Hom-Lie algebras and the Hom-Yang-Baxter equation, we introduce a twisted generalization of the classical Yang-Baxter equation (CYBE), called the classical Hom-Yang-Baxter equation (CHYBE). We show how an arbitrary solution of the CYBE induces multiple infinite families of solutions of the CHYBE. We also introduce the closely related structure of Hom-Lie bialgebras, ...
متن کاملBraided Lie Bialgebras
We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of ...
متن کاملDouble Bicrossproduct Lie Bialgebras
We construct double biproduct, bicrossproduct, double crossproduct, double bicrossproduct Lie bialgebras from braided Lie bialgebras. The relations between them are found. The main result generalizes Majid’s matched pair of Lie algebras, Drinfeld’s quantum double of Lie bialgebras, and Masuoka’s cross product Lie bialgebras. Some properties of double biproduct Lie bialgebras are given. In the a...
متن کاملThe Frobenius Properad Is Koszul
We show Koszulness of the prop governing involutive Lie bialgebras and also of the props governing non-unital and unital-counital Frobenius algebras, solving a long-standing problem. This gives us minimal models for their deformation complexes, and for deformation complexes of their algebras which are discussed in detail. Using an operad of graph complexes we prove, with the help of an earlier ...
متن کامل